

Deep Learning for Data Science DS 542

https://dl4ds.github.io/fa2025/

Fitting Models

Plan for Today

- Homework 3 post-mortem
- Gradient descent review
- Stochastic gradient descent (more formally)
- Momentum
- Adam

Homework 3 Post-Mortem

sigmoid (linear(x))

Raise your hand if you encountered any of the following.

- Bad prediction accuracy 1 11 not gradocl
- Loss function improving very slowly
 - ightarrowLoss function going up $\ \ ar{l}$ $\ \ ar{l}$
 - NaN or infinity in loss calculations
 - NaN in initial loss calculations? (1)

$$P = \frac{1}{1 + e^2}$$

$$0 < \frac{1}{1+e^{-2}} < 1$$

if z finite (intheory)

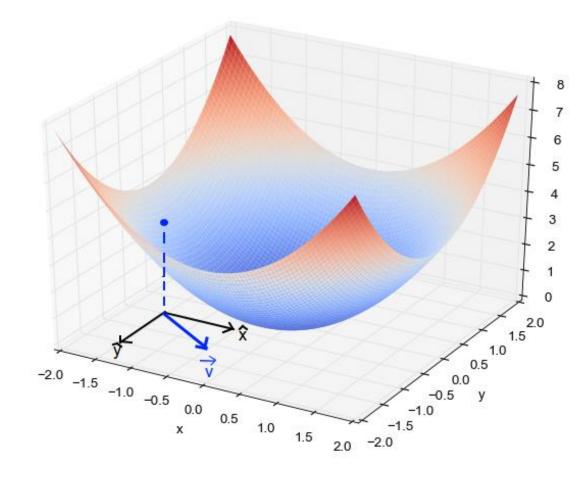
Plan for Today

- Homework 3 post-mortem
- Gradient descent review
- Stochastic gradient descent (more formally)
- Momentum
- Adam

Gradient

$$rac{\partial L}{\partial oldsymbol{\phi}} = egin{bmatrix} rac{\partial L}{\partial \phi_0} \ rac{\partial L}{\partial \phi_1} \ dots \ rac{\partial L}{\partial \phi_N} \end{bmatrix}$$

Partial derivative, e.g. rate of change, w.r.t. each input (independent) variable.



Geometric Interpretation: Each variable is a unit vector, and then

- gradient is the rate of change (increase) in the direction of each unit vector
- vector sum points to the overall direction of greatest change (increase)

Gradient descent algorithm

Compute the derivatives of the loss with respect to the parameters:

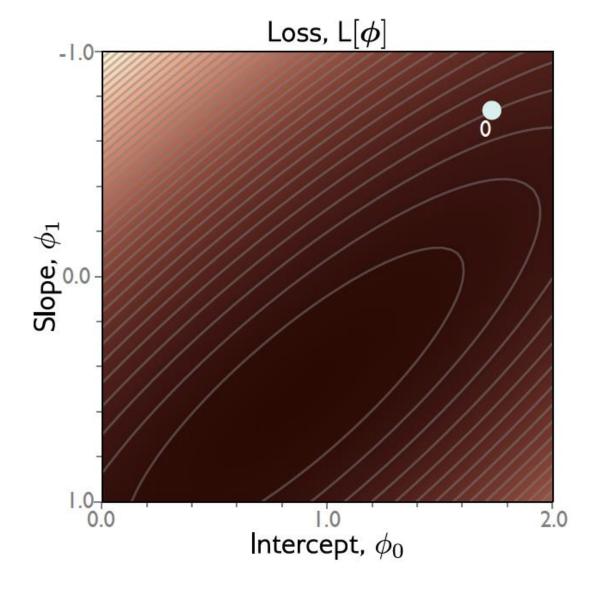
$$\frac{\partial L}{\partial \phi} = \begin{bmatrix} \frac{\partial L}{\partial \phi_0} \\ \frac{\partial L}{\partial \phi_1} \\ \vdots \\ \frac{\partial L}{\partial \phi_N} \end{bmatrix}. \qquad \text{Also notated as } \nabla_w L$$

Update the parameters according to the rule:

$$\phi \longleftarrow \phi - \alpha \frac{\partial L}{\partial \phi}$$

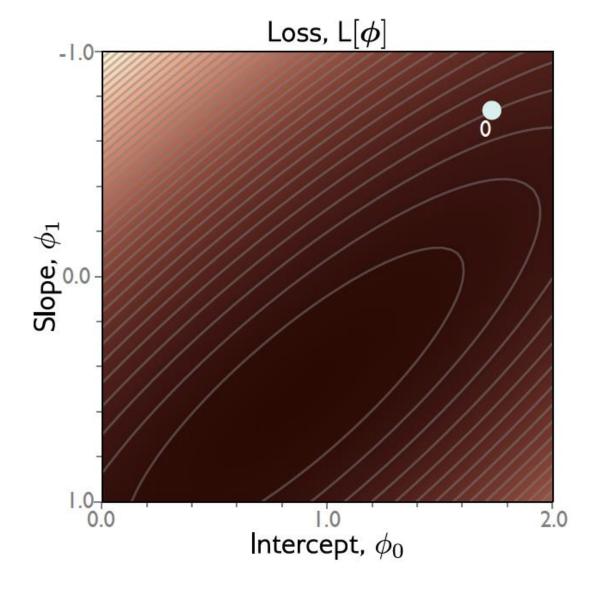
 $\phi \leftarrow \phi - \alpha \frac{\partial L}{\partial \phi}, \qquad \text{minus for opposite} \\ \text{direction.} \\ \propto = \text{learning rate.}$

where the positive scalar α determines the magnitude of the change.



Step 1: Compute derivatives (slopes of function) with Respect to the parameters

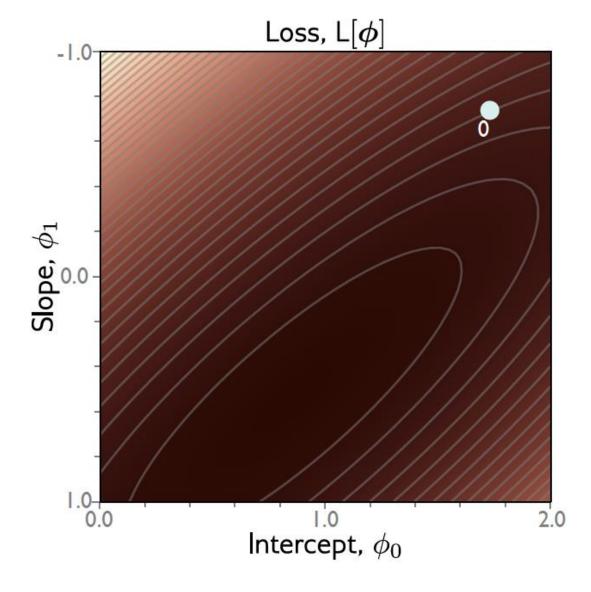
$$L[\phi] = \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$



Step 1: Compute derivatives (slopes of function) with Respect to the parameters

$$L[\phi] = \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

$$\frac{\partial L}{\partial \boldsymbol{\phi}} = \frac{\partial}{\partial \boldsymbol{\phi}} \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} \frac{\partial \ell_i}{\partial \boldsymbol{\phi}}$$

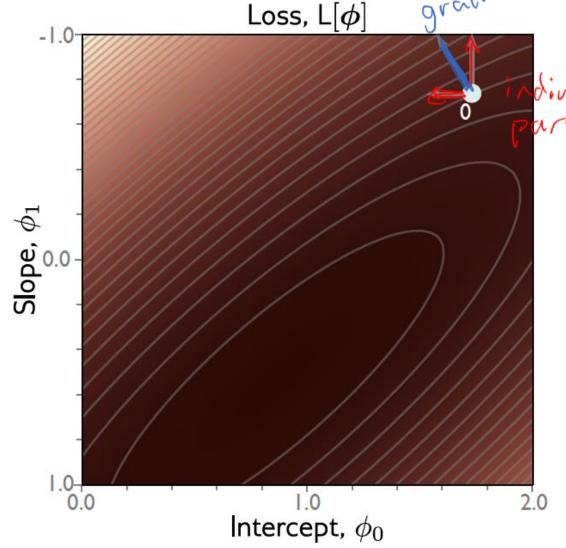


Step 1: Compute derivatives (slopes of function) with Respect to the parameters

$$L[\phi] = \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

$$\frac{\partial L}{\partial \boldsymbol{\phi}} = \frac{\partial}{\partial \boldsymbol{\phi}} \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} \frac{\partial \ell_i}{\partial \boldsymbol{\phi}}$$

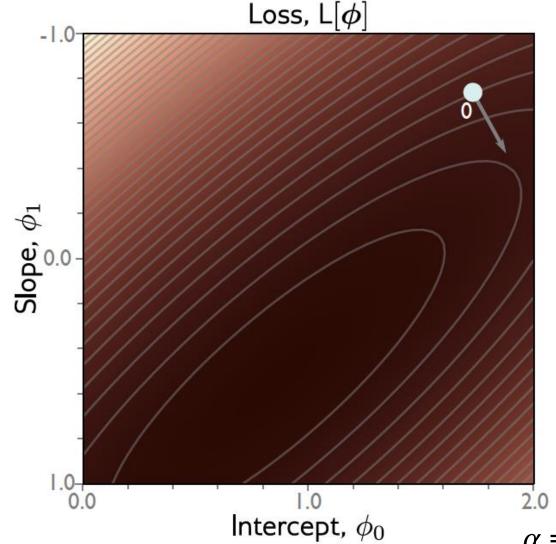
$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$



Step 1: Compute derivatives (slopes of function) with Respect to the parameters

Partial derivatives
$$\frac{\partial L}{\partial \phi} = \frac{\partial}{\partial \phi} \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} \frac{\partial \ell_i}{\partial \phi}$$

$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$



Step 1: Compute derivatives (slopes of function) with Respect to the parameters

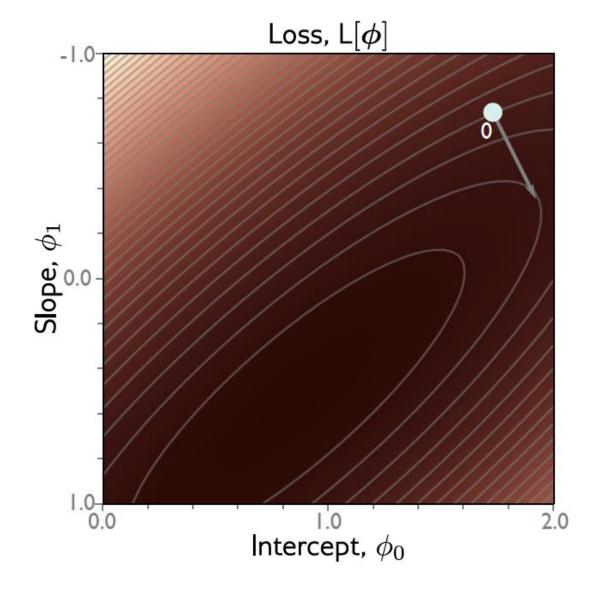
$$\frac{\partial L}{\partial \boldsymbol{\phi}} = \frac{\partial}{\partial \boldsymbol{\phi}} \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} \frac{\partial \ell_i}{\partial \boldsymbol{\phi}}$$

$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

Step 2: Update parameters according to rule

$$\boldsymbol{\phi} \longleftarrow \boldsymbol{\phi} - \alpha \frac{\partial L}{\partial \boldsymbol{\phi}}$$

 α = step size or learning rate if fixed



Step 1: Compute derivatives (slopes of function) with Respect to the parameters

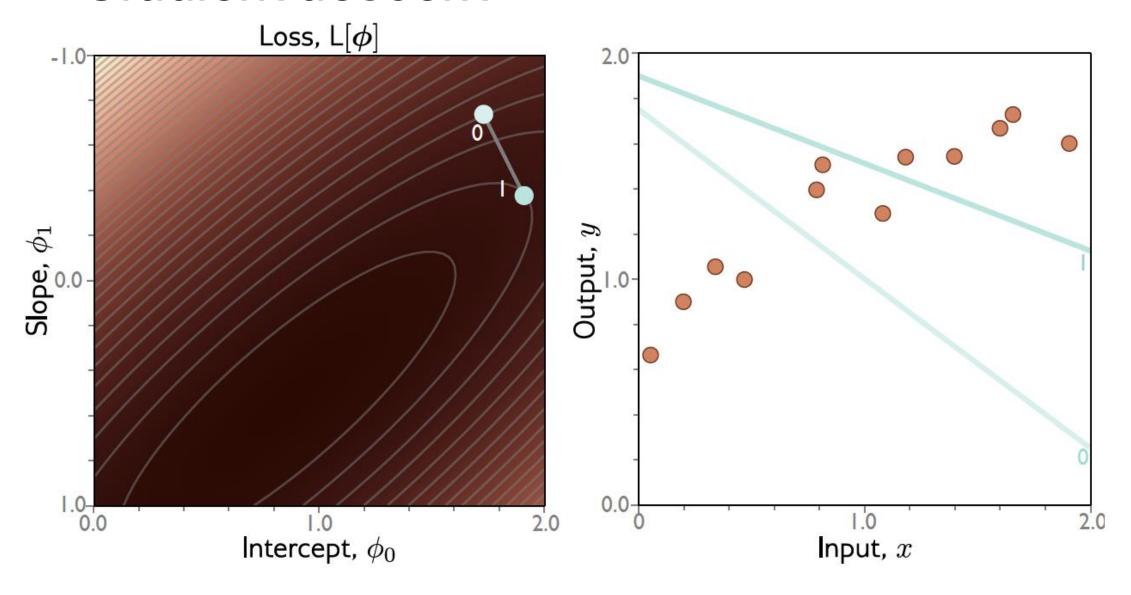
$$\frac{\partial L}{\partial \boldsymbol{\phi}} = \frac{\partial}{\partial \boldsymbol{\phi}} \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} \frac{\partial \ell_i}{\partial \boldsymbol{\phi}}$$

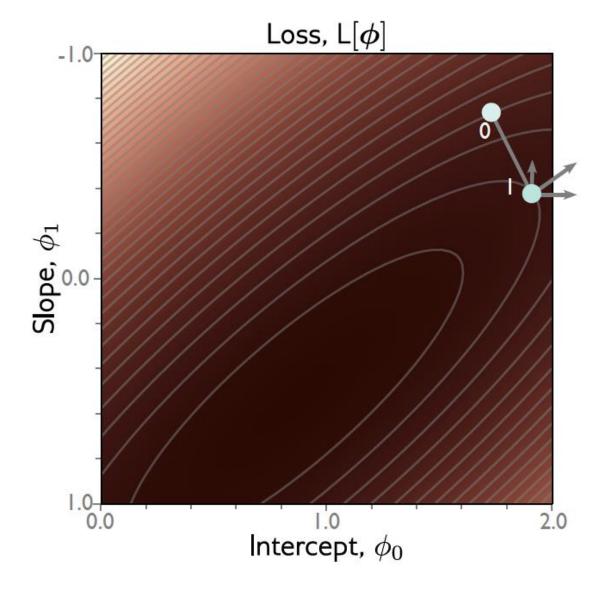
$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

Step 2: Update parameters according to rule

$$\boldsymbol{\phi} \longleftarrow \boldsymbol{\phi} - \alpha \frac{\partial L}{\partial \boldsymbol{\phi}}$$

 α = step size





Step 1: Compute derivatives (slopes of function) with Respect to the parameters

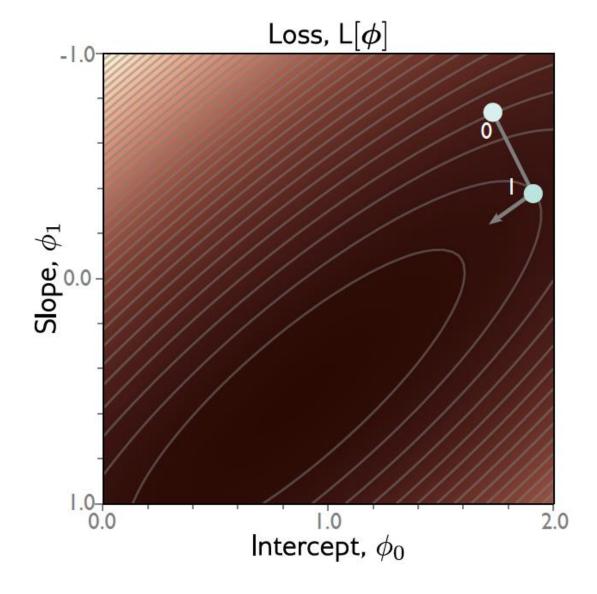
$$\frac{\partial L}{\partial \boldsymbol{\phi}} = \frac{\partial}{\partial \boldsymbol{\phi}} \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} \frac{\partial \ell_i}{\partial \boldsymbol{\phi}}$$

$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

Step 2: Update parameters according to rule

$$\boldsymbol{\phi} \longleftarrow \boldsymbol{\phi} - \alpha \frac{\partial L}{\partial \boldsymbol{\phi}}$$

 α = step size



Step 1: Compute derivatives (slopes of function) with Respect to the parameters

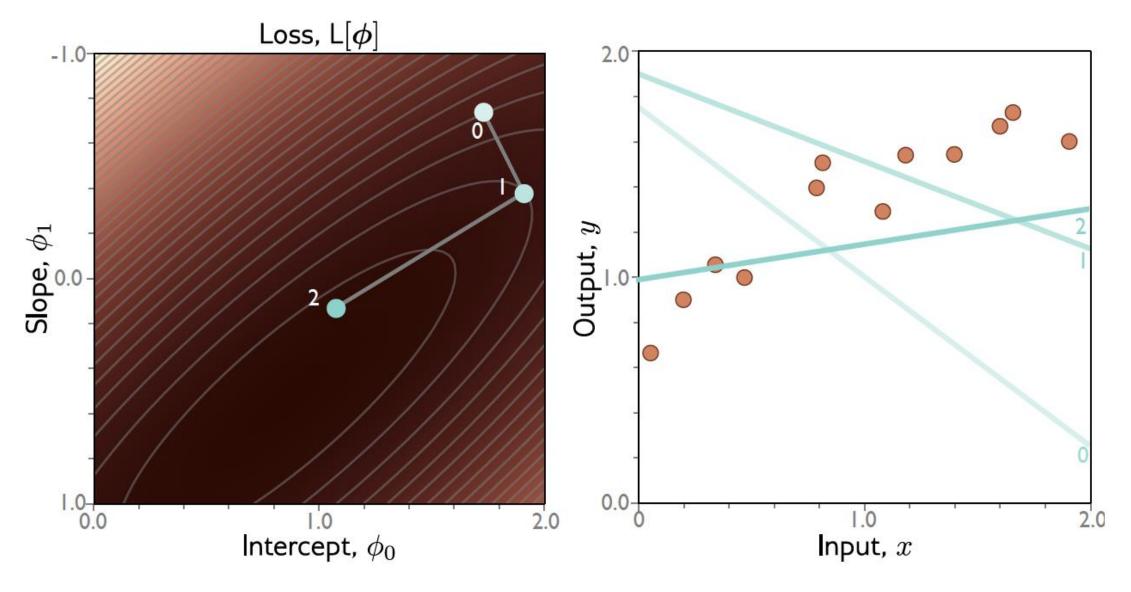
$$\frac{\partial L}{\partial \boldsymbol{\phi}} = \frac{\partial}{\partial \boldsymbol{\phi}} \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} \frac{\partial \ell_i}{\partial \boldsymbol{\phi}}$$

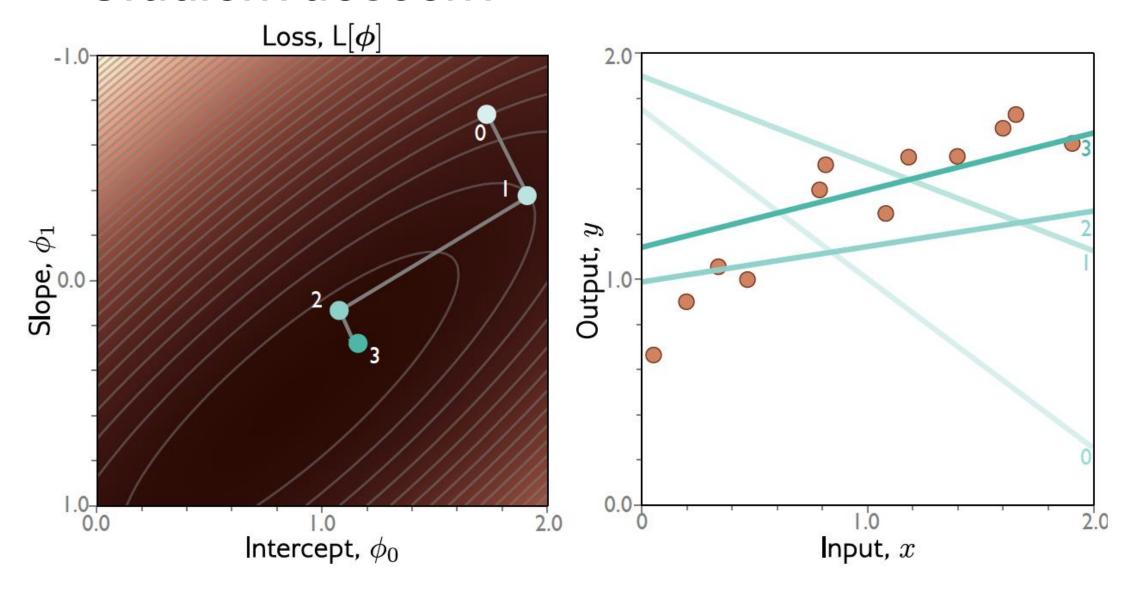
$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

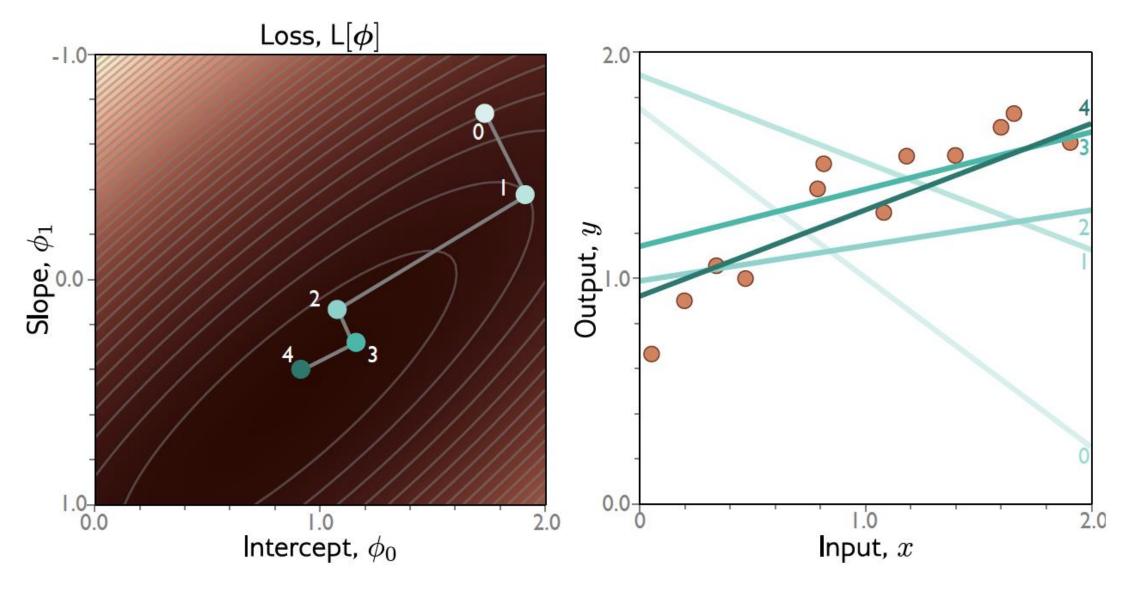
Step 2: Update parameters according to rule

$$\boldsymbol{\phi} \longleftarrow \boldsymbol{\phi} - \alpha \frac{\partial L}{\partial \boldsymbol{\phi}}$$

 α = step size







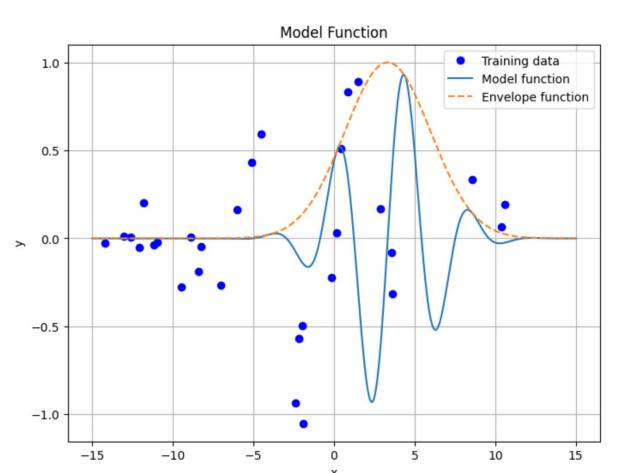
The linear model loss function was convex.

We'll use a more complex (non-convex) model that we can still visualize in 2D and 3D

Gabor Function

Gabor Model (with Envelope)

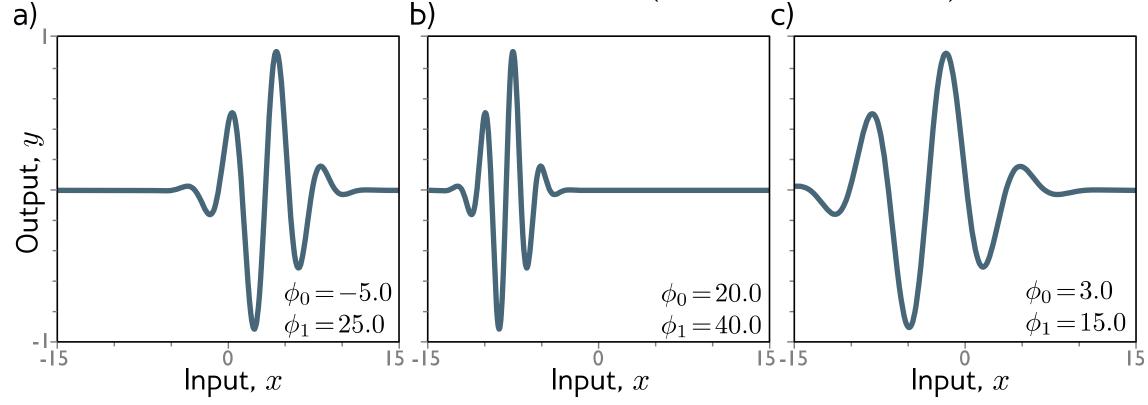
$$f[x, \phi] = \sin[\phi_0 + 0.06 \cdot \phi_1 x] \cdot \exp\left(-\frac{(\phi_0 + 0.06 \cdot \phi_1 x)^2}{8.0}\right)$$



Gabor model

 $f[x, \phi] = \sin[\phi_0 + 0.06 \cdot \phi_1 x] \cdot \exp\left(-\frac{(\phi_0 + 0.06 \cdot \phi_1 x)^2}{8.0}\right)$

repeated

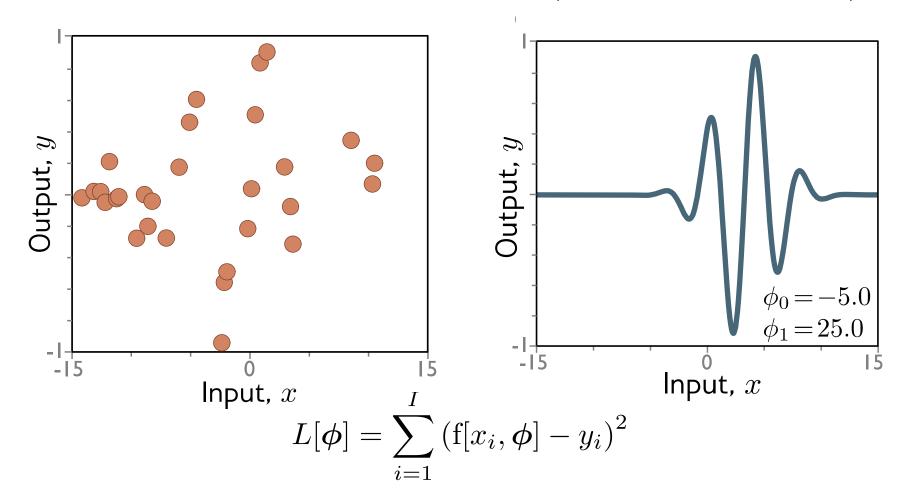


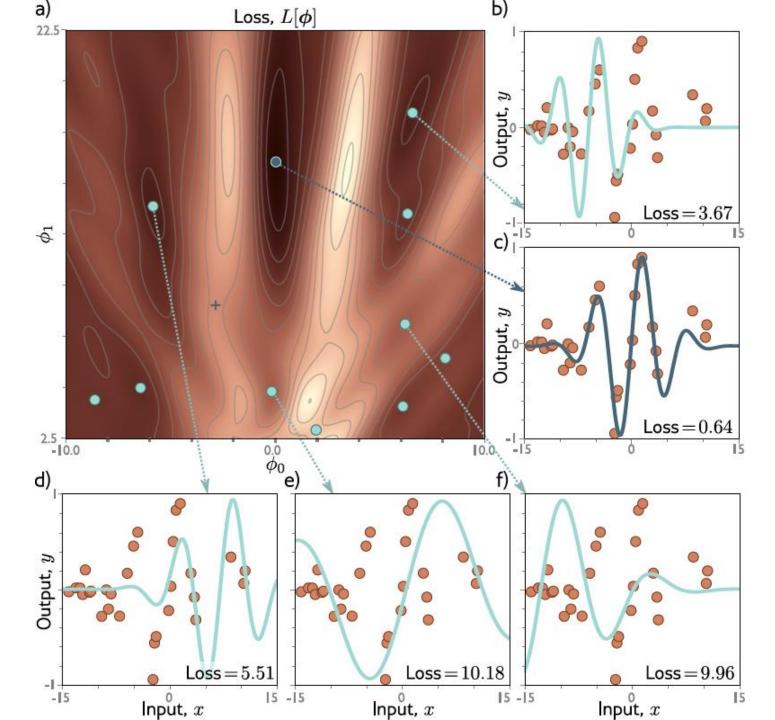
 ϕ_0 shifts left and right

 ϕ_1 shrinks and expands the sinusoid and envelope

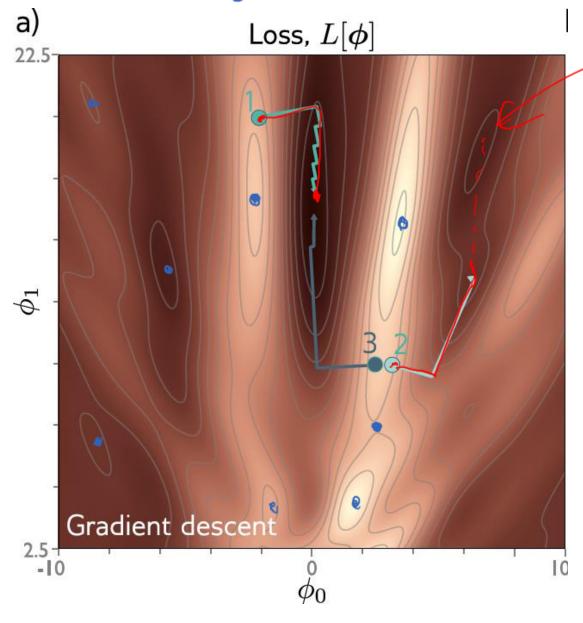
Toy Dataset and Gabor model

$$f[x, \phi] = \sin[\phi_0 + 0.06 \cdot \phi_1 x] \cdot \exp\left(-\frac{(\phi_0 + 0.06 \cdot \phi_1 x)^2}{8.0}\right)$$





· = Zerogradient



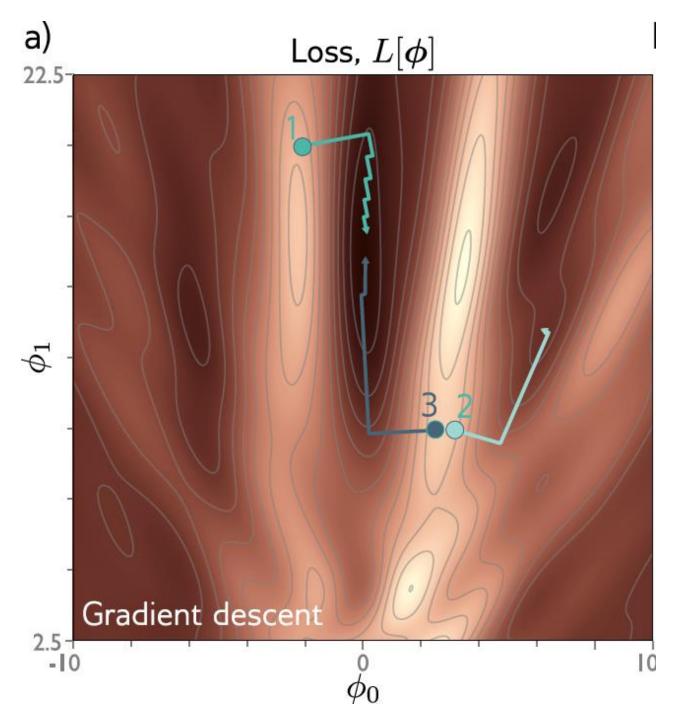
local minima

- Gradient descent gets to the global minimum if we start in the right "valley"
- Otherwise, descends to a local minimum
- Or get stuck near a saddle point

endpoint depends on start point.

Plan for Today

- Homework 3 post-mortem
- Gradient descent review
- Stochastic gradient descent (more formally)
- Momentum
- Adam



IDEA: add noise, save computation

- Stochastic gradient descent
- Compute gradient based on only a subset of points
 a mini-batch
- Work through dataset sampling without replacement
- One pass though the data is called an epoch

Batches and Epochs (Ex. 30 sample dataset, batch size 5)

• • •

```
Data Indice
                                                               17 18 19 20 21 22 23 24 25 26 27 28
                                                12 13 14 15 16
 Permute I
                                          4 16
                                                 5 13 11
                                                                2 25
                                                                       3 21
                                                                                Batch Size 5
   30/5 = 6 batches
             Step 0, Batch # 0, Batch Range [0 1 2 3 4], Batch index: [27 15 23 17 8]
             Step 1, Batch # 1, Batch Range [5 6 7 8 9], Batch index: [ 9 28 24 12 0]
      per epoch
             Step 2, Batch # 2, Batch Range [10 11 12 13 14], Batch index: [ 4 16 5 13 11]
             Step 3, Batch # 3, Batch Range [15 16 17 18 19], Batch index: [22 1 2 25 3]
             Step 4, Batch # 4, Batch Range [20 21 22 23 24], Batch index: [21 26 18 29 20]
             Step 5, Batch # 5, Batch Range [25 26 27 28 29], Batch index: [ 7 10 14 19 6]
             Epoch # 1-----
             Step 6, Batch # 0, Batch Range [0 1 2 3 4], Batch index: [27 15 23 17 8]
             Step 7, Batch # 1, Batch Range [5 6 7 8 9], Batch index: [ 9 28 24 12 0]
             Step 8, Batch # 2, Batch Range [10 11 12 13 14], Batch index: [ 4 16 5 13 11]
             Step 9, Batch # 3, Batch Range [15 16 17 18 19], Batch index: [22 1 2 25 3]
```

Stochastic grad

Stochastic gradient descent

Before (full bat

Before (full batch descent)

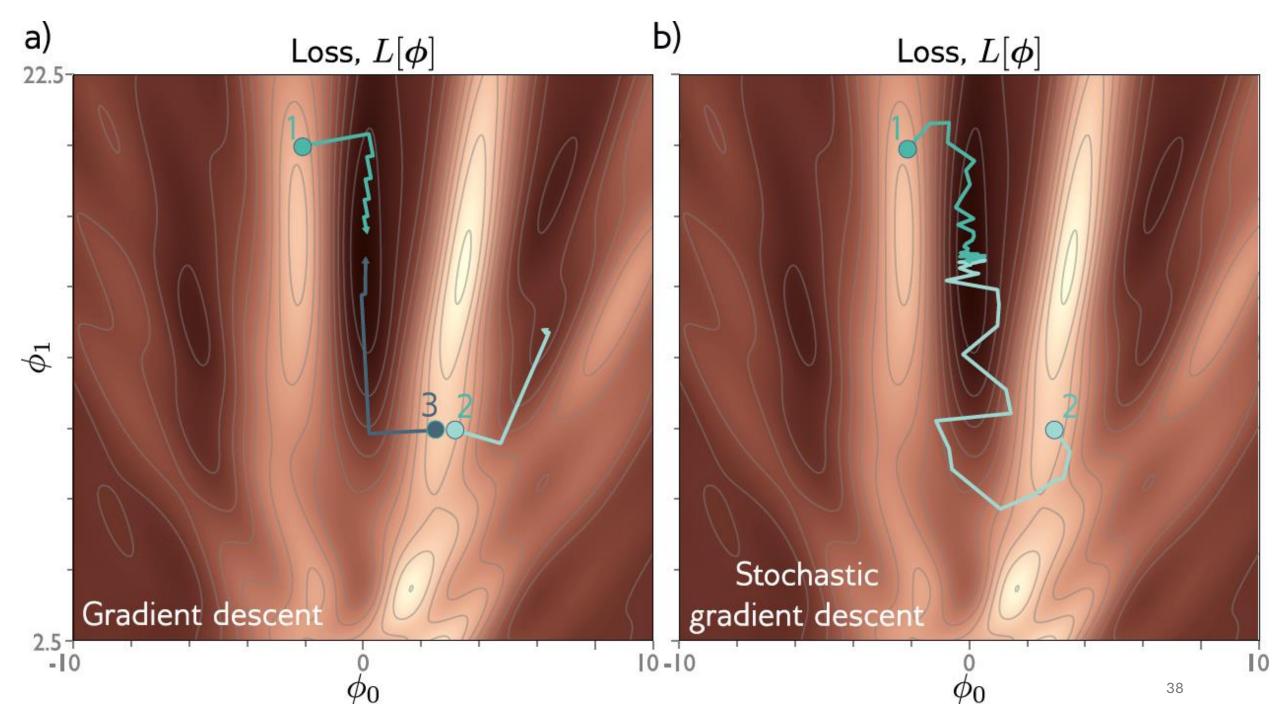
After (SGD)

 $\phi_{t+1} \longleftarrow \phi_t - \alpha \sum_{i=1}^{I} \frac{\partial \ell_i[\phi_t]}{\partial \phi},$ After (SGD) sum over dataset

 $\phi_{t+1} \longleftarrow \phi_t - \alpha \sum_{i \in \mathcal{B}_t} \frac{\partial \ell_i[\phi_t]}{\partial \phi},$

Fixed learning rate α maybe change blue pochs

Fixed learning r



Properties of SGD

- Can escape from local minima
- Adds noise, but still sensible updates as based on part of activities.

 Still uses all data equally

 Less computationally expensive

 Same prediction/loss/gradientwork.

 **Ibotter solutions

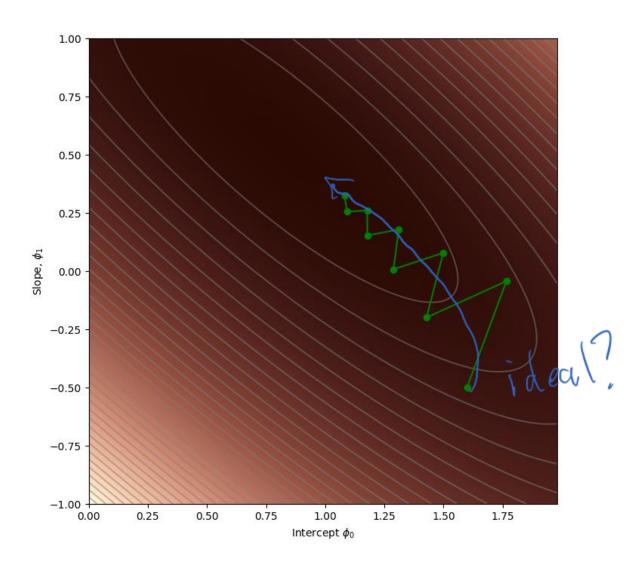
 Slightly more parameter update work.

- Doesn't converge in traditional sense
- Learning rate schedule decrease learning rate over time

Plan for Today

- Homework 3 post-mortem
- Gradient descent review
- Stochastic gradient descent (more formally)
- Momentum
- Adam

Simple Gradient Descent



Think of analogy of a ball rolling down a hill.

Would it follow path like on the left?

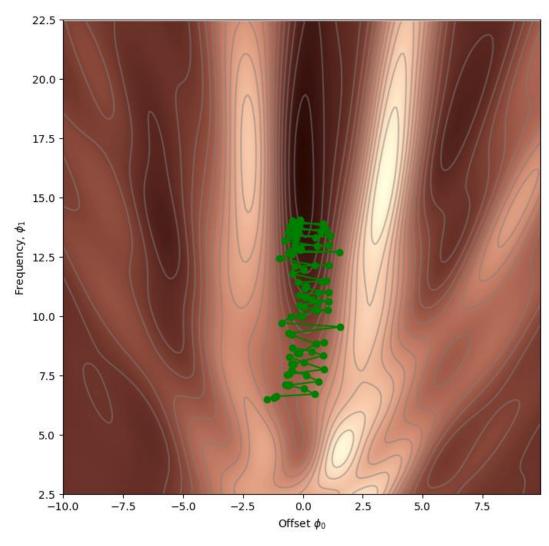
Why/Why not? What's missing?

Momentum

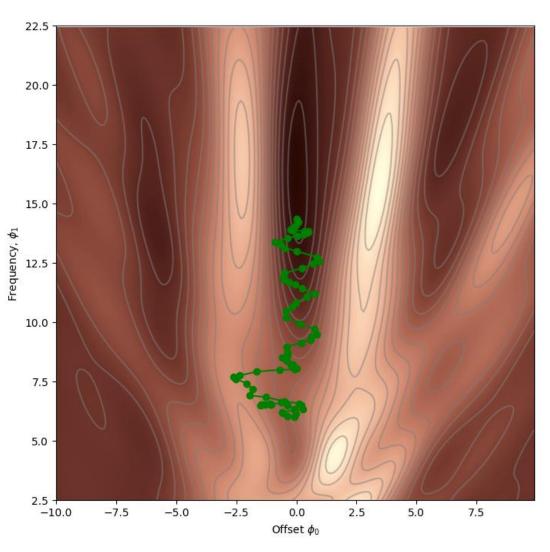
- Weighted sum of this gradient and previous gradient
- Not only influenced by gradient

• Changes more slowly over time exponentially weighted gradient moving average $\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1-\beta) \underbrace{\sum_{i \in \mathcal{B}_t} \frac{\partial \ell_i[\phi_t]}{\partial \phi}}_{\text{ontrolling momentum}} \Rightarrow b \in \mathcal{B}_t$

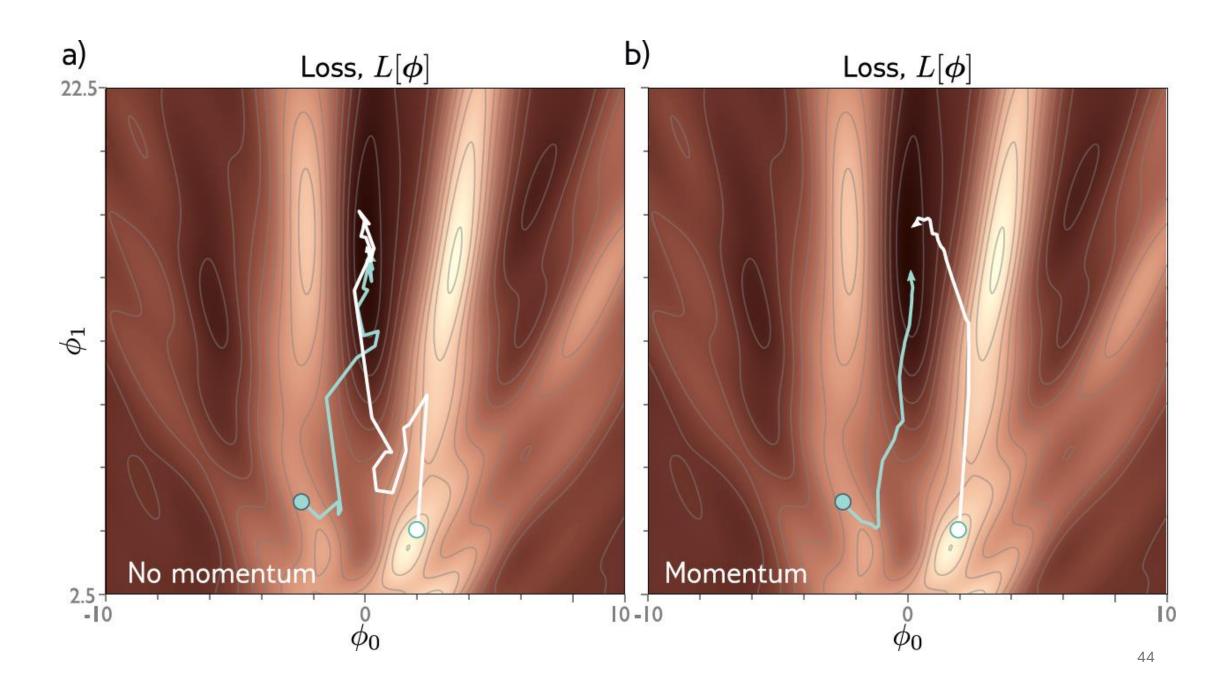
Without and With Momentum



Without Momentum, Loss = 1.31



With Momentum, Loss = 0.96



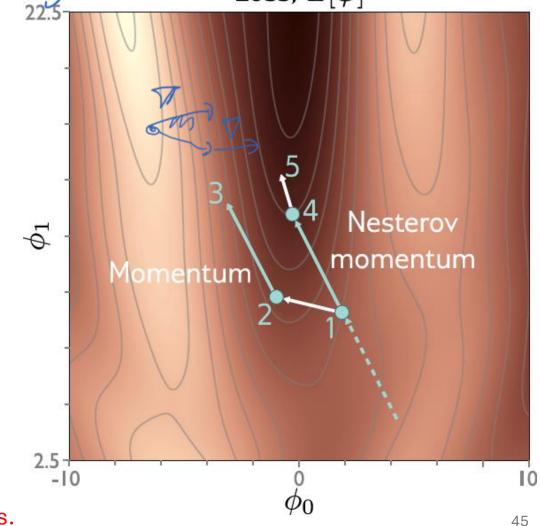
Nesterov accelerated momentum,
Anticipate turns instead of turning at last search [oss, L[\phi]]

 Momentum smooths out gradient of current location

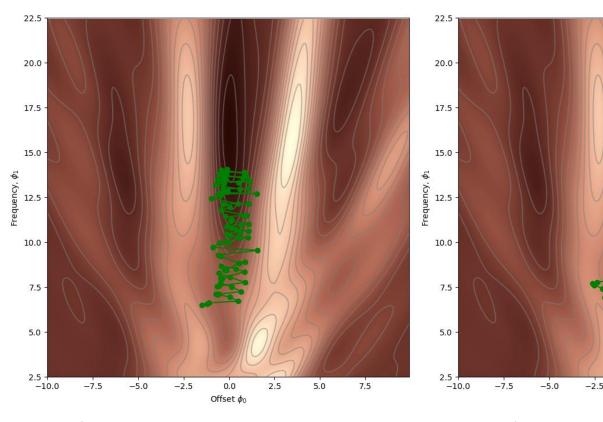
$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1 - \beta) \sum_{i \in \mathcal{B}_t} \frac{\partial \ell_i[\phi_t]}{\partial \phi}$$
$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \mathbf{m}_{t+1}$$

 Alternative, smooth out gradient of where we think we will be!

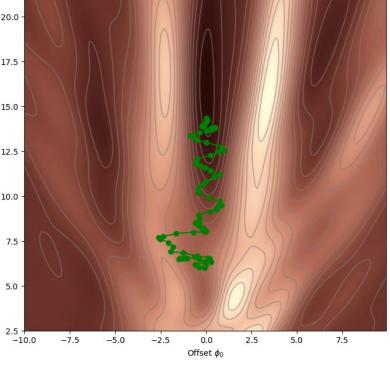
$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1 - \beta) \sum_{i \in \mathcal{B}_t} \frac{\partial \ell_i [\phi_t - \alpha \cdot \mathbf{m}_t]}{\partial \phi}$$
$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \mathbf{m}_{t+1}$$
Still in batch



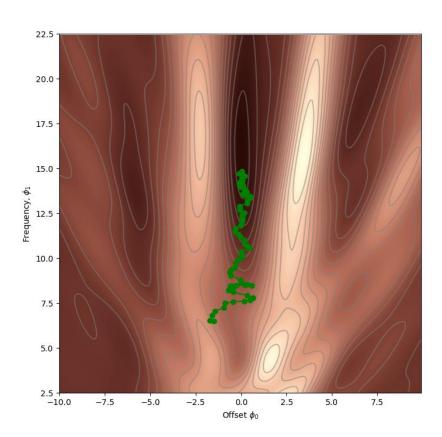
Nesterov Momentum



Without Momentum, Loss = 1.31



With Momentum, Loss = 0.96

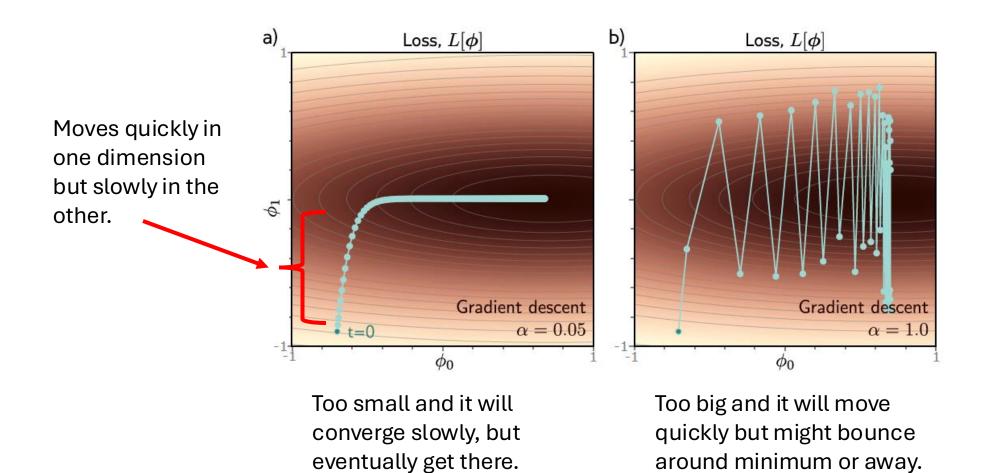


Nesterov Momentum, Loss = 0.80

Plan for Today

- Homework 3 Post-Mortem
- Gradient Descent Review
- Stochastic gradient descent (more formally)
- Momentum
- Adam

The challenge with fixed step sizes



Solution Part 1: Unit Vector Gradients

• Measure gradient \mathbf{m}_{t+1} and squared magnitude of gradient \mathbf{v}_{t+1}

$$m_{t+1} \leftarrow \frac{\partial L[\phi_t]}{\partial \phi}$$

$$v_{t+1} \leftarrow \left| \frac{\partial L[\phi_t]}{\partial \phi} \right|^2$$

Normalize:

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1}} + \epsilon}$$

 α is the learning rate ϵ is a small constant to prevent div by 0 Square, sqrt and div are all pointwise

Solution Part 1: Unit Vector gradients

• Measure gradient \mathbf{m}_{t+1} and squared magnitude of gradient \mathbf{v}_{t+1}

$$m_{t+1} \leftarrow \frac{\partial L[\phi_t]}{\partial \phi}$$

$$v_{t+1} \leftarrow \left| \frac{\partial L[\phi_t]}{\partial \phi} \right|^2$$

• Normalize:

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1} + \epsilon}}$$

 α is the learning rate ϵ is a small constant to prevent div by 0 Square, sqrt and div are all pointwise

Dividing by the magnitude, so normalized to unit vector.

Solution Part 1: Unit Vector gradients

Measure mean and pointwise squared gradient

$$m_{t+1} \leftarrow \frac{\partial L[\phi_t]}{\partial \phi}_{v_{t+1}} \leftarrow \left| \frac{\partial L[\phi_t]}{\partial \phi} \right|^2 \qquad \frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1}} + \epsilon} = \begin{bmatrix} 1.0 \\ -1.0 \\ 1.0 \end{bmatrix}$$

$$\mathbf{m}_{t+1} = \begin{bmatrix} 3.0 \\ -2.0 \\ 5.0 \end{bmatrix}$$

$$v_{t+1} = 3^2 + (-2)^2 + 5^2 = 38$$

• Normalize:

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1}} + \epsilon}$$

$$\frac{m_{t+1}}{\sqrt{v_{t+1}} + \text{epsilon}} \approx \begin{bmatrix} +0.49\\ -0.32\\ +0.81 \end{bmatrix}$$

• Measure gradient \mathbf{m}_{t+1} and pointwise squared gradient \mathbf{v}_{t+1}

$$\mathbf{m}_{t+1} \leftarrow \frac{\partial L[\phi_t]}{\partial \phi}$$
 gradient $\mathbf{v}_{t+1} \leftarrow \frac{\partial L[\phi_t]^2}{\partial \phi}$ Square individual gradient components

Normalize:

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1}} + \epsilon}$$

 α is the learning rate ϵ is a small constant to prevent div by 0 Square, sqrt and div are all pointwise

• Measure gradient \mathbf{m}_{t+1} and pointwise squared gradient \mathbf{v}_{t+1}

$$\mathbf{m}_{t+1} \leftarrow \frac{\partial L[\boldsymbol{\phi}_t]}{\partial \boldsymbol{\phi}}$$
 $\mathbf{v}_{t+1} \leftarrow \frac{\partial L[\boldsymbol{\phi}_t]}{\partial \boldsymbol{\phi}}^2$

Normalize:

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1} + \epsilon}}$$

 α is the learning rate ϵ is a small constant to prevent div by 0 Square, sqrt and div are all pointwise

Dividing by the positive root, so normalized to 1 and all that is left is the sign.

Measure mean and pointwise squared gradient

$$\mathbf{m}_{t+1} \leftarrow \frac{\partial L[\boldsymbol{\phi}_t]}{\partial \boldsymbol{\phi}}$$

$$\mathbf{v}_{t+1} \leftarrow \frac{\partial L[\boldsymbol{\phi}_t]}{\partial \boldsymbol{\phi}}^2$$

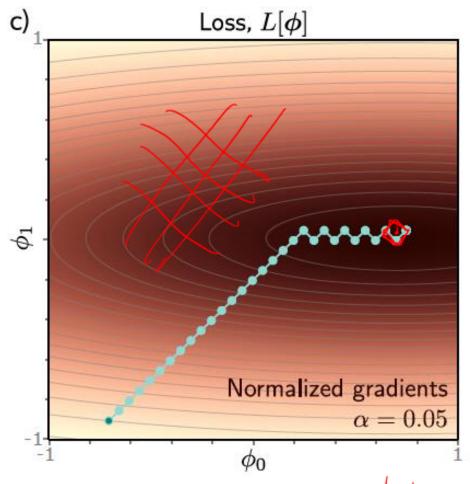
Normalize:

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1}} + \epsilon}$$

$$\mathbf{m}_{t+1} = \begin{vmatrix} 3.0 \\ -2.0 \\ 5.0 \end{vmatrix}$$

$$\mathbf{v}_{t+1} = \begin{bmatrix} 9.0\\4.0\\25.0 \end{bmatrix}$$

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1}} + \epsilon} = \begin{bmatrix} 1.0 \\ -1.0 \\ 1.0 \end{bmatrix}$$
 Parameter changes are +1,0,-1



• algorithm moves downhill a fixed distance α along each coordinate

makes good progress in both directions

 but will not converge unless it happens to land exactly at the minimum

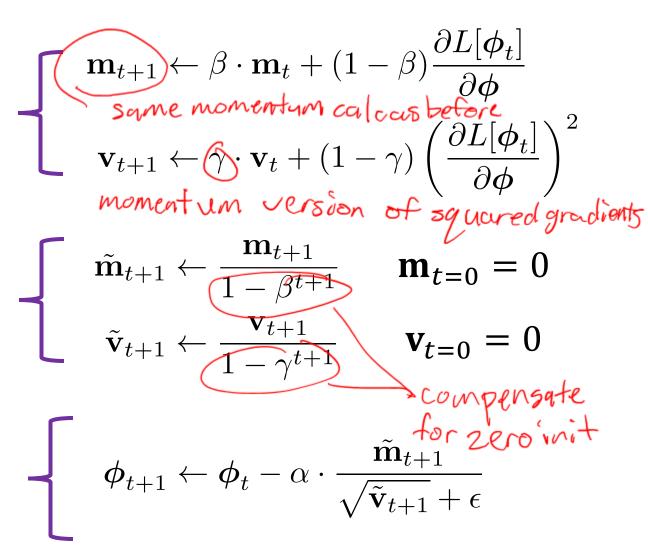
moving on a grid in parameter space

Adaptive moment estimation (Adam)

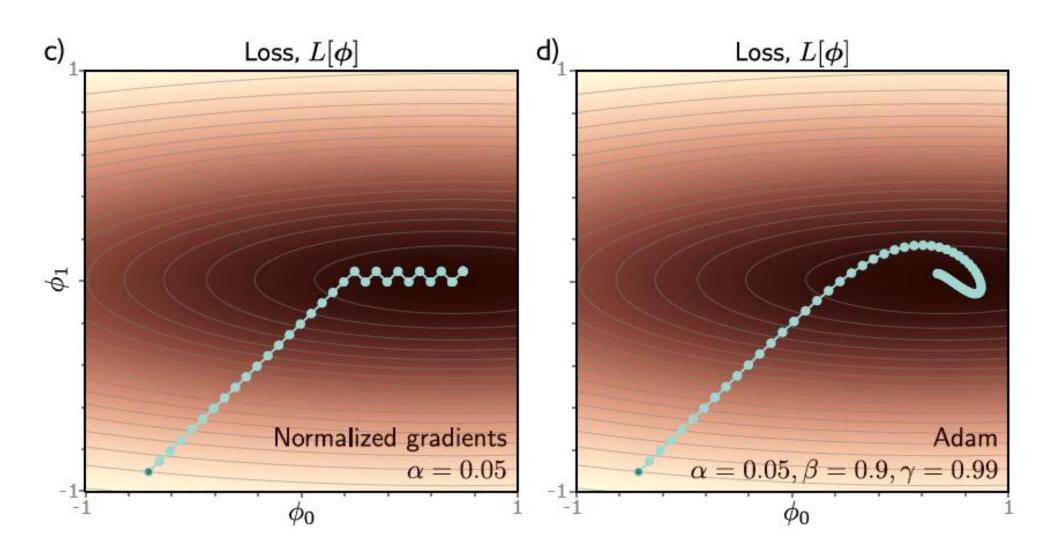
 Compute mean and pointwise squared gradients with momentum

 Boost momentum near start of the sequence since they are initialized to zero

Update the parameters



Adaptive moment estimation (Adam)



Other advantages of ADAM

dollerent gradient nagnitudes motivale Per parameter norm...

- Gradients can diminish or grow deep into networks. ADAM balances out changes across depth of layers.
- Adam is less sensitive to the initial learning rate, so it doesn't need complex learning rate schedules.

counterexamples exist.
but generally good enough inpractice.

Additional Hyperparameters

- Choice of learning algorithm
 - SGD
 - Momentum
 - Nesterov Momentum
 - (•)ADAM
- Learning rate
 - Fixed
 - Schedule
 - Loss dependent

• Momentum Parameters] Stick w/ Pytorch defaults

care more if SGD

Recap

- Gradient Descent Find a minimum for non-convex, complex loss functions
- Stochastic Gradient Descent Save compute by calculating gradients in batches, which adds some noise to the search
- (Nesterov) Momentum Add momentum to the gradient updates to smooth out abrupt gradient changes
- ADAM Correct for imbalance between gradient components while providing some momentum