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Plan for Today

• Homework 3 post-mortem
• Gradient descent review
• Stochastic gradient descent (more formally)
• Momentum
• Adam
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Homework 3 Post-Mortem

Raise your hand if you encountered any of the following.

• Bad prediction accuracy
• Loss function improving very slowly
• Loss function going up
• NaN or infinity in loss calculations
• NaN in initial loss calculations?
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• Adam
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Gradient

Partial derivative, e.g. rate of 
change,  w.r.t. each input 
(independent) variable.

Geometric Interpretation: Each variable is a unit 
vector, and then
• gradient is the rate of change (increase) in the 

direction of each unit vector
• vector sum points to the overall direction of 

greatest change (increase) 14



Gradient descent algorithm

Also notated as ∇𝑤𝐿
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Gradient descent
Step 1:  Compute derivatives (slopes of function) with
Respect to the parameters
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Step 1:  Compute derivatives (slopes of function) with
Respect to the parameters

Gradient descent

19



Step 1:  Compute derivatives (slopes of function) with
Respect to the parameters

Step 2:  Update parameters according to rule

𝛼 = step size or learning rate if fixed

Gradient descent

20



Step 1:  Compute derivatives (slopes of function) with
Respect to the parameters
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Gradient descent
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Gradient descent
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Gradient descent
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Gradient descent
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The linear model loss function was convex.

We’ll use a more complex (non-convex) 
model that we can still visualize in 2D and 3D

➔ Gabor Function
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Gabor Model (with Envelope)
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Gabor model

𝜙0 shifts left and right
𝜙1 shrinks and expands the sinusoid and envelope
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Toy Dataset and Gabor model
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• Gradient descent gets to the global 
minimum if we start in the right 
“valley”

• Otherwise, descends to a local 
minimum

• Or get stuck near a saddle point
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Plan for Today

• Homework 3 post-mortem
• Gradient descent review
• Stochastic gradient descent (more formally)
• Momentum
• Adam
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IDEA:  add noise, save 
computation

• Stochastic gradient 
descent

• Compute gradient based 
on only a subset of points 
– a mini-batch

• Work through dataset 
sampling without 
replacement

• One pass though the data 
is called an epoch 
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Batches and Epochs 
(Ex. 30 sample dataset, batch size 5)

[ 0  1  2  3 4 5  6  7  8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29]

[27 15 23 17 8 9 28 24 12 0  4 16  5 13 11 22  1  2 25  3 21 26 18 29 20  7 10 14 19  6]

 

Epoch # 0----------- 

Step 0, Batch # 0, Batch Range [0 1 2 3 4], Batch index: [27 15 23 17 8] 

Step 1, Batch # 1, Batch Range [5 6 7 8 9], Batch index: [ 9 28 24 12 0] 

Step 2, Batch # 2, Batch Range [10 11 12 13 14], Batch index: [ 4 16 5 13 11] 

Step 3, Batch # 3, Batch Range [15 16 17 18 19], Batch index: [22 1 2 25 3] 

Step 4, Batch # 4, Batch Range [20 21 22 23 24], Batch index: [21 26 18 29 20] 

Step 5, Batch # 5, Batch Range [25 26 27 28 29], Batch index: [ 7 10 14 19 6] 

Epoch # 1----------- 

Step 6, Batch # 0, Batch Range [0 1 2 3 4], Batch index: [27 15 23 17 8] 

Step 7, Batch # 1, Batch Range [5 6 7 8 9], Batch index: [ 9 28 24 12 0] 

Step 8, Batch # 2, Batch Range [10 11 12 13 14], Batch index: [ 4 16 5 13 11] 

Step 9, Batch # 3, Batch Range [15 16 17 18 19], Batch index: [22 1 2 25 3] 

… 

Data Indices
Permute

Batch Size 5
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Stochastic gradient descent

Before (full batch descent)

After (SGD)

Fixed learning rate α
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Properties of SGD

• Can escape from local minima
• Adds noise, but still sensible updates as based on part of data
• Still uses all data equally
• Less computationally expensive
• Seems to find better solutions

• Doesn’t converge in traditional sense
• Learning rate schedule – decrease learning rate over time
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Plan for Today

• Homework 3 post-mortem
• Gradient descent review
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Simple Gradient Descent

Think of analogy of a ball rolling 
down a hill.

Would it follow path like on the 
left?

Why/Why not? What’s missing?
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• Weighted sum of this gradient and previous gradient
• Not only influenced by gradient
• Changes more slowly over time

Momentum

Still in batches.
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Without and With Momentum

Without Momentum, Loss = 1.31 With Momentum, Loss = 0.96
43
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Nesterov accelerated momentum

• Momentum smooths out gradient of 
current location

• Alternative, smooth out gradient of 
where we think we will be!

Still in batches. 45



Nesterov Momentum

Without Momentum, Loss = 
1.31

With Momentum, Loss = 
0.96

Nesterov Momentum, Loss = 
0.80
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Plan for Today

• Homework 3 Post-Mortem
• Gradient Descent Review
• Stochastic gradient descent (more formally)
• Momentum
• Adam
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The challenge with fixed step sizes

Too small and it will 
converge slowly, but 
eventually get there.

Too big and it will move 
quickly but might bounce 
around minimum or away.

Moves quickly in 
one dimension 
but slowly in the 
other.
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Solution Part 1: Unit Vector Gradients

• Measure gradient 𝐦𝑡+1 and squared magnitude of gradient 𝐯𝑡+1

𝑚𝑡+1 ←
𝜕𝐿[𝜙𝑡]

𝜕𝜙

𝑣𝑡+1 ←
𝜕𝐿 𝜙𝑡

𝜕𝜙

2

• Normalize:
𝛼 is the learning rate
𝜖 is a small constant to prevent div by 0
Square, sqrt and div are all pointwise
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Solution Part 1: Unit Vector gradients

• Measure gradient 𝐦𝑡+1 and squared magnitude of gradient 𝐯𝑡+1

𝑚𝑡+1 ←
𝜕𝐿[𝜙𝑡]

𝜕𝜙

𝑣𝑡+1 ←
𝜕𝐿 𝜙𝑡

𝜕𝜙

2

• Normalize:
𝛼 is the learning rate
𝜖 is a small constant to prevent div by 0
Square, sqrt and div are all pointwise

Dividing by the magnitude, so normalized to 
unit vector.
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Solution Part 1: Unit Vector gradients

• Measure mean and pointwise squared gradient

𝑚𝑡+1 ←
𝜕𝐿[𝜙𝑡]

𝜕𝜙

𝑣𝑡+1 ←
𝜕𝐿 𝜙𝑡

𝜕𝜙

2

• Normalize:
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𝑣𝑡+1 = 32 + (−2)2+52 = 38

𝑚𝑡+1

𝒗𝒕+𝟏 + \epsilon
≈

+0.49
−0.32
+0.81

Large gradient components suppress other gradient components!



Solution Part 2: Normalized gradients

• Measure gradient 𝐦𝑡+1 and pointwise squared gradient 𝐯𝑡+1

• Normalize: 𝛼 is the learning rate
𝜖 is a small constant to prevent div by 0
Square, sqrt and div are all pointwise
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Solution Part 2: Normalized gradients

• Measure gradient 𝐦𝑡+1 and pointwise squared gradient 𝐯𝑡+1

• Normalize: 𝛼 is the learning rate
𝜖 is a small constant to prevent div by 0
Square, sqrt and div are all pointwise

Dividing by the positive root, so normalized to 
1 and all that is left is the sign.
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Solution Part 2: Normalized gradients

• Measure mean and pointwise squared gradient

• Normalize:
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Solution Part 2: Normalized gradients

• algorithm moves downhill a fixed 
distance α along each coordinate

• makes good progress in both 
directions 

• but will not converge unless it 
happens to land exactly at the 
minimum
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Adaptive moment estimation (Adam)

• Compute mean and pointwise 
squared gradients with 
momentum

• Boost momentum near start of 
the sequence since they are 
initialized to zero

• Update the parameters

𝐦𝑡=0 = 0

𝐯𝑡=0 = 0
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Adaptive moment estimation (Adam)
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Other advantages of ADAM

• Gradients can diminish or grow deep into networks. ADAM 
balances out changes across depth of layers.

• Adam is less sensitive to the initial learning rate, so it doesn’t need 
complex learning rate schedules.
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Additional Hyperparameters

• Choice of learning algorithm
• SGD
• Momentum
• Nesterov Momentum
• ADAM

• Learning rate
• Fixed
• Schedule
• Loss dependent

• Momentum Parameters
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Recap

• Gradient Descent – Find a minimum for non-convex, complex loss 
functions

• Stochastic Gradient Descent – Save compute by calculating 
gradients in batches, which adds some noise to the search

• (Nesterov) Momentum – Add momentum to the gradient updates 
to smooth out abrupt gradient changes

• ADAM – Correct for imbalance between gradient components 
while providing some momentum
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